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The well-known problem of the motion of a solid with a cavity filled with a viscous liquid is considered. 

The problem is described by a singularly perturbed system of differential equations, consisting of the 

equations of motion of the solid and the Navier-Stokes equations. The Reynolds number is the small 

parameter. It is shown that the method of integral manifolds [l, 21 can be used to investigate this system 

of equations. It enables the investigation of the complete singularly perturbed system to be replaced by 

an investigation of a regular abbreviated system of lower dimensions, describing the slow motions of 

the complete system. The equations of the slow motions are obtained, which turn out to be the 

equations of motion of the solid with additional terms on the right-hand side which occur as a result of 

taking into account the effect of the viscous liquid on the motion of the solid. 

This problem was considered previously [3] in a similar formulation using the Vishik- 
Lyusternik method [4], and also in [5] using the method.of boundary functions [6]. The method 
of integral manifolds [7] used below has been employed to separate the motions in the problem 
of the rotation of a conducting solid in a magnetic field. 

1. DESCRIPTION OF THE PROBLEM 

The motion of a solid with a cavity D completely filled with a viscous incompressible liquid 
of density p and kinematic viscosity v, in a potential field of mass forces with potential U(r, t) is 
described by the following system of equations in a system of coordinates x,, x,, X, rigidly 
connected with the body [3] 

dz / dr = k(z,co) 

Ido/dt+p(d/dt)j( rxu)dr=M(z,w)-oxh-oxpj(rxu)dr 
D D 

&/&+il(oxr)l&=vAu-[Vq+(uV)u+2(axu)] 

divu=O (~-ED), ulaD= 0, q=p/p+U-(oxr)2/2-rth,ldt 

(1.1) 

Here z = z(t) is a vector function, whose components are the kinematic parameters charact- 
erizing the orientation of the solid (for example, the Euler angles, or the direction cosines), 
and also (in the case of an unclamped body) the coordinates and velocity of the centre of mass 
of the system, CO = cc(t) is the vector of the absolute angular velocity of the solid, u = u(r, t) is 
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the vector of the relative velocity of the particles of liquid, p = p(r, t) is the pressure in the 
liquid, u = u(t) is the absolute velocity of the centre of mass of the system, r is the radius-vector 
of a given point in the coupled system of coordinates, and t is the time. Further, Z = Z,+ZI, 
where I, is the inertia tensor of the body, Z, is the inertia tensor of the liquid, “consolidated” 
in the body, and M = M(z, w) is the moment of the external forces. 

Suppose to is a characteristic time in the motion of the solid with respect to the centre of 
mass and t, is the characteristic linear dimension of the region D. We will investigate system 
(1.1) with the condition that the Reynolds number R = I$$* is small (equal to the ratio of the 
characteristic time Z$J-~, during which the viscosity considerably changes the flow in the cavity, 
to the characteristic time t, of relative motion of the body). Without loss of generality we will 
assume that 1, = 1 and t, = 1. Then, with the above assumptions the parameter p = v-’ will be 
small and system (1.1) will be singularly perturbed. 

2. REFORMULATION OF THE PROBLEM 

We will write system (1.1) in the form of the following system of equations 

i=k(z,w), a,1o+a,*ti=f(z,w) (2.1) 
~[u2,cit -I- a,,zil = Au - j~%‘q -I- &g(z,w, u) (2.2) 

Here and henceforth the dot denotes differentiation with respect to time, the variables (z, w, U) 
E Z xR3 XL*(D), where Z is a finite-dimensional real space of appropriate dimensions, while L 
is the space of quadratically summed vectors defined in the region D . The operator 

QII il II u12 :~3x~2(D)~~3x~2(D) 
a21 a22 

is defined by the equations 

a, $0 = lo, ~+~u=p](~x~)dr, u2,0=oxr, ~z~~u=u (2.3) 
D 

and is linear and bounded. The operator A : L’(D) -+ U..“(D) : u + Au has the region of definition 

where ‘IN;(D) is a Sobolev space. Finally, the functions fand g are defined by the equations 

f(z,w,U)=f~(Z,O)--xu,*U, fo(z,~)=Wz*~)-~x~” (2.4) 

g(z, w, u) = -2(o x u) - (rJV>u 

and are continuous. 
We have the following expansion of lL2(D) in an orthogonal direct sum [S] 

where the space S,(D) is obtained by closure with respect to the norm of the space L’(D) of 
the set of continuous vectors solenoidal in D, having a zero normal component on I~D, while 
the space G(D) is obtained by closure with respect to the norm of the space L’(D) of the set of 
gradients of the functions continuous in D. Suppose 27 : l_*(D) + R_‘(D) is the orthogonal pro- 
jector onto the subspace s,D[O]. By projecting Eq. (2.2) onto §,D we obtain the equation 
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p[rIcl,,c;, + u+l = I-IAU + p&(z,o,u) (2.5) 

The system of equations (2.1), (2.5) is closed with respect to the variables z, o, u. The 
operator IIA : S,(D) -+ S,(D) is densely defined and, as was shown in [lo], is self-conjugate and 
negative-definite. Note that, since the region D is unbounded, it therefore follows that the 
operator lIA has a real discrete spectrum , which lies entirely in the left half-plane @-, and a 
system of eigenvectors complete in S,(D). System (2.1), (2.5) will be the subject of further 
investigation. 

3. CONVERSION OF THE SYSTEM 

We will convert system (2.1), (2.5) to standard form. To do this we introduce the operator 

and rewrite system (2.1) (2.5) in the form 

i = k(z,w) 
(3.1) 

We will show that the operator L is inverse. First we note that 

(a22 - ~a2*a;~a,2)u=u-~(pl-'~(rxu)drxr)~((E-IZB)ar 

D 

The last equality is used to determine the operator B :k*(D) + IL*(D). It was shown in [5] that 
II B II< 1. Since Il is the projector, it follows that II FIB II < 1. Hence, the operator (E- llB) is 
inverse in I-*(D) and consequently in S,(D). Since the operators 4, and a, are obviously 
inverse, the invertibility of L therefore follows. 

We now obtain the explicit form of the operator 

L-1 #2, ;I 11: lR3 xS,(D)+ R3 xS,(D) 

We have 

b,, = (a,, - ai&Ia2, >-’ = J-‘, b,, = -J-‘u,2u;; 

b2, = -(a,, - lk,,u;:a,,)-‘rIu,,u;: = -(E- l-I&-‘l-Iu2,r-’ 

b22 =(E- l-B)-' 

(the first equality serves to determine the operator J : KY3 -+ W’). 
We note for later that 

b;;b,, = -l-Iu,,I-', b,,b;; =-I%,,, b,, -b,,b;;b,, = I-' 

We can now write system (3.1) in the standard form 

i=k(z,w), /.tc;)=&, uli=c2 

6k =b~2~u+~1[4,f(z,o,u)+b,,ng(z,w,u)l, k=1,2 

(3.2) 

(3.3) 

(3.4) 
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4. SCHEME FOR CONSTRUCTING THE INTEGRAL MANIFOLD AN-D EQUATION 
OF SLOW MOTIONS 

Suppose the singularly perturbed system 

i = Rx,y,p), pj = C(x,y,p) (4.1) 

satisfies the following two conditions 
1. the generating equation G(x, y , 0) = 0 has an isolated soiution y = h,(x); 
2. for the isolated solution y = b(x) for each x we have the following condition of stability 

CC- (4.2) 

Then [l, 21 system (4.1) has an invariant manifold y = h(x, n) lying in a certain neighbour - 
hood of the surface y=&(x). and which satisfies the condition of stability and the reduction 
principle. 

The condition of stability. We will represent the solutions of system (4.1), which begin in the 
region of the manifold y = h(x, p), in the form of the sum of a certain solution which lies on the 
manifold y= h(x, p), and a small exponentially decreasing correction. Motion along the mani- 
fold y = h(x, u) occurs in accordance with the equation 

i = F(x, K&p), p), y = h(x, g> (4.3) 

which is called the equation of slow motion. 

The reduction principle [ll]. The problems of stability are equivalent for Eqs (4.1) and (4.3). 
If, in particular, F(0, 0, n) = 0, G(0, 0, p) = 0, then h(0, p) = 0 and the zeroth solution of Eqs 
(4.1) is stable (asymptotically stable, unstable) if and only if the zeroth solution of Eq. (4.3) 
possesses a similar property. 

The invariant manifold y = h(x, u) is called the integral manifold (slow motions) of system 
(4.1). These properties of the integral manifold enable us to reduce the investigation of the 
initial system (4.1) to an investigation of system (4.3). 

The function /@, n) can be obtained in the form of the asymptotic expansion from the 
equation 

(4.4) 

5. THE EQUATION OF SLOW MOTIONS 

If we replace u by ~6 in (3.4), we obtain a system in which the equations for z and w are 
regular, while the equation for 1~ is singularly perturbed. Putting n=O in this equation for u, 
we obtain the generating equation 

b,,n(Au+g(z,w,O))+b,,f(7.0,0).=0 (5.1) 

Since the operator IlA is inverse, this equation has a unique solution. Using relations (2.4) 
and (3.3) we can represent this solution in the form 

u = h(z,w) = VLV-‘na,,I-‘f&w) (5.2) 
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Condition (4.2) in the case considered should have the form 

spec(bz$L4) c C- 

Since the operator b, is inverse, the spectrum of the operator b,,IIA is identical with the 
spectrum of the operator l-IA, and consequently lies in the left half-plane @-. Hence, condition 
(4.2) is satisfied. 

Hence, system (3.4) has an integral manifold of slow motions which can be obtained in the 
form u = @r(z, w, cl) from the equation 

b,,I-IAh = -b,,fe + ~[2b&-I(O x h) + b*i (0 x a,,h) + 

al2 ah -, 
%I fo + 

ah _, E+psl a,2 
-’ ah _, 

;i;;’ (oxq,h) 1 
(we have used representations (2.4)). 

Expanding the solution of this equation in the form 

(5.3) 

(5.4) 

for /r&z, o) we obtain representation (5.2) and for Ir, we obtain the expression 

h,(z,o)=(~)-‘[2~(wxh,)-~u,,~-‘(ox~,~~)+ 

+(l-L4)-‘m,,r’ af, afo Zk+x&-‘fo 

The remaining coefficients h,(z, w) in expansion (5.4) can be obtained in a similar way. 
It follows from (4.4) that the equation of slow motions for system (3.4) will have the form 

i = k(z,o), b = b,,f(z,o,CLh)+b,,nR(z,o,~h)+b,,~h 

Substituting the expression from (5.3) here instead of llAh we obtain the following equation 
for 0 

rti= f. -,[(coxq2h)+q2(E+&&-‘q2~(~k+;~~-’fo)]+ 

+P’ aI2 
[ ( 

E+P 
1 

-’ ah _, 
dwl (oxq,h) 1 (5.5) 

Substituting expansion (5.4) here instead of h, expanding in powers of u, introducing the 
notation 

P = -p-‘a,:! (l-IA)-’ I&z,, (5.6) 

and using representation (5.2) we obtain the equation of slow motions of system (3.4) and, of 
course, of system (1.1) also in the form 

i = k(z,w) (5.7) 
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lci, = f. + pp 0 x PI-‘fo + PI-’ 
[ ( $$+$I-lfo )I + w2 ) 

Equations (5.7) are identical with those obtained previously in [3, 51. Here the equation of 
slow motions (5.7) is written exactly to terms O&t*), but using the equation for the integral 
manifold (5.3) and Eq. (5.5) for o we can easily write the equation of slow motions with any 
degree of accuracy. 

6. PROPERTIES OF THE OPERATOR P 

We will prove that the operator P, defined by (5.6), is self-conjugate and positive-definite. 
Hence, it will follow, in particular, that in a certain system of coordinates the matrix of the 
operator P is diagonal and has positive values on the principal diagonal. 

We first of all note that the operator f&z,, :R3 + s,,(D) can be represented in the form 

where Y(r) = mat[Vvl, Vw2, Vw3] is a matrix (in the system of coordinates the columns of 
which will be the vectors Vwk, while the functions vk are the solutions of the Stokes- 
Zhukovskii problem [12] 

Avk=O, a~,/&+(el,xr,n)l,,=O (k=1,2,3) 

where ek are the unit vectors of the system of coordinates x1, x,, x3. The operator @IA-’ : 
S,(D) + S,,(D) is bijective, self-conjugate and negative-definite [lo], while (TIA~‘u = w in the 
case when w is the solution of the problem 

-rotrot w = u, divw=O (LED), wlaD=O 

We finally recall that the operator LZ,~ : S,(D) + IRS is defined by (2.3). 
Further, for all u E S,(D) and o E lR3 we have 

(p-c2,,u,o)= j(rXu,O)dr= ~(6.w,u)dr= 

=p-h D 
D 

wxr),u)dr-I(Y(r)O,u)dr=(u,na,,o) 
D 

This means that (p-‘a,,)* = lI%1, where the asterisk denotes a change to the conjugate opera- 
tor. Hence, from the fact that the operator TIA is a self-conjugate it follows that the operator P 
is self-conjugate. 

Further, for all o E R3, o f 0 we have 

= /(rot fill2 + QdQ nxrotR)ds=llrotR112 >O (R=(IM)-‘Ila,,o) 

This means that the operator P is positive-definite. 
Note that in the conversions in Section 6 the same symbol (. , .) has been used to denote the 

scalar product both in the space R3 and in the space L’(D). 
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